Highest vectors of representations (total 13) ; the vectors are over the primal subalgebra. | \(-g_{2}+g_{-5}\) | \(h_{1}\) | \(-g_{5}+g_{-2}\) | \(g_{14}\) | \(g_{12}\) | \(g_{10}\) | \(g_{15}\) | \(g_{13}\) | \(g_{16}\) | \(g_{9}\) | \(g_{7}\) | \(g_{11}\) | \(g_{4}\) |
weight | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(\omega_{1}+\omega_{2}\) | \(\omega_{1}+\omega_{2}\) | \(\omega_{1}+\omega_{2}\) | \(2\omega_{2}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-\psi\) | \(0\) | \(\psi\) | \(2\omega_{1}-2\psi\) | \(2\omega_{1}-\psi\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}+\psi\) | \(2\omega_{1}+2\psi\) | \(\omega_{1}+\omega_{2}-\psi\) | \(\omega_{1}+\omega_{2}\) | \(\omega_{1}+\omega_{2}+\psi\) | \(2\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{-\psi} \) → (0, 0, -1) | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{\psi} \) → (0, 0, 1) | \(\displaystyle V_{2\omega_{1}-2\psi} \) → (2, 0, -2) | \(\displaystyle V_{2\omega_{1}-\psi} \) → (2, 0, -1) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{1}+\psi} \) → (2, 0, 1) | \(\displaystyle V_{2\omega_{1}+2\psi} \) → (2, 0, 2) | \(\displaystyle V_{\omega_{1}+\omega_{2}-\psi} \) → (1, 1, -1) | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1, 0) | \(\displaystyle V_{\omega_{1}+\omega_{2}+\psi} \) → (1, 1, 1) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | |||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
| Semisimple subalgebra component.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-\psi\) | \(0\) | \(\psi\) | \(2\omega_{1}-2\psi\) \(-2\psi\) \(-2\omega_{1}-2\psi\) | \(2\omega_{1}-\psi\) \(-\psi\) \(-2\omega_{1}-\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+\psi\) \(\psi\) \(-2\omega_{1}+\psi\) | \(2\omega_{1}+2\psi\) \(2\psi\) \(-2\omega_{1}+2\psi\) | \(\omega_{1}+\omega_{2}-\psi\) \(-\omega_{1}+\omega_{2}-\psi\) \(\omega_{1}-\omega_{2}-\psi\) \(-\omega_{1}-\omega_{2}-\psi\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{1}+\omega_{2}+\psi\) \(-\omega_{1}+\omega_{2}+\psi\) \(\omega_{1}-\omega_{2}+\psi\) \(-\omega_{1}-\omega_{2}+\psi\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{\psi}\) | \(\displaystyle M_{2\omega_{1}-2\psi}\oplus M_{-2\psi}\oplus M_{-2\omega_{1}-2\psi}\) | \(\displaystyle M_{2\omega_{1}-\psi}\oplus M_{-\psi}\oplus M_{-2\omega_{1}-\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+\psi}\oplus M_{\psi}\oplus M_{-2\omega_{1}+\psi}\) | \(\displaystyle M_{2\omega_{1}+2\psi}\oplus M_{2\psi}\oplus M_{-2\omega_{1}+2\psi}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}-\psi}\oplus M_{-\omega_{1}+\omega_{2}-\psi}\oplus M_{\omega_{1}-\omega_{2}-\psi}\oplus M_{-\omega_{1}-\omega_{2}-\psi}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\psi}\oplus M_{-\omega_{1}+\omega_{2}+\psi}\oplus M_{\omega_{1}-\omega_{2}+\psi}\oplus M_{-\omega_{1}-\omega_{2}+\psi}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | |||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{\psi}\) | \(\displaystyle M_{2\omega_{1}-2\psi}\oplus M_{-2\psi}\oplus M_{-2\omega_{1}-2\psi}\) | \(\displaystyle M_{2\omega_{1}-\psi}\oplus M_{-\psi}\oplus M_{-2\omega_{1}-\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+\psi}\oplus M_{\psi}\oplus M_{-2\omega_{1}+\psi}\) | \(\displaystyle M_{2\omega_{1}+2\psi}\oplus M_{2\psi}\oplus M_{-2\omega_{1}+2\psi}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}-\psi}\oplus M_{-\omega_{1}+\omega_{2}-\psi}\oplus M_{\omega_{1}-\omega_{2}-\psi}\oplus M_{-\omega_{1}-\omega_{2}-\psi}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\psi}\oplus M_{-\omega_{1}+\omega_{2}+\psi}\oplus M_{\omega_{1}-\omega_{2}+\psi}\oplus M_{-\omega_{1}-\omega_{2}+\psi}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) |